Composition-dependent thermal equation of state of B2 Fe-Si alloys at high pressure

Author:

Yokoo Shunpei1ORCID,Edmund Eric23,Morard Guillaume24,Baron Marzena Anna2,Boccato Silvia2,Decremps Frédéric2,Hirose Kei15,Pakhomova Anna6,Antonangeli Daniele2

Affiliation:

1. Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan

2. Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France

3. † Present address: Earth & Planets Laboratory, Carnegie Institution for Science, Washington, D.C. 20015, U.S.A.

4. Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000 Grenoble, France

5. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan

6. Photon Science, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany

Abstract

Abstract Solid iron-silicon alloys play an important role in planetary cores, especially for planets that formed under reducing conditions, such as Mercury. The CsCl (B2) structure occupies a considerable portion of the Fe-Si binary phase diagram at pressure and temperature conditions relevant for the core of Mercury, yet its thermodynamic and thermoelastic properties are poorly known. Here, we report in situ X-ray diffraction measurements on iron-silicon alloys with 7–30 wt% Si performed in laser-heated diamond-anvil cells up to ~120 GPa and ~3000 K. Unit-cell volumes of the B2 phase at high pressures and high temperatures have been used to obtain a composition-dependent thermal equation of state of this phase. In turn, the thermal equation of state is exploited to determine the composition of the B2 phase in hcp+B2 mixtures at 30–100 GPa and to place constraints on the hcp+B2/B2 phase boundary, determined to vary between ~13–18 wt% Si in the considered pressure and temperature range. The hcp+B2/B2 boundary of Fe-Si alloys is observed to be dependent on pressure but weakly dependent on temperature. Our results, coupled with literature data on liquid equations of state, yield an estimation of the density contrast between B2 solid and liquid under Mercury’s core conditions, which directly relates to the buoyancy of the crystallizing material. While the density contrast may be large enough to form a solid inner core by the gravitational sinking of B2 alloys in a Si-rich core, the density of the B2 solid is close to that of the liquid at solidus conditions for Si concentration approaching ~10 wt% Si.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Reference56 articles.

1. The global magnetic field of Mercury from MESSENGER orbital observations;Anderson;Science,2011

2. Sound velocities and density measurements of solid hcp-Fe and hcp-Fe–Si (9 wt%) alloy at high pressure: Constraints on the Si abundance in the Earth’s inner core;Antonangeli;Earth and Planetary Science Letters,2018

3. Melting of iron-silicon alloy up to the core–mantle boundary pressure: Implications to the thermal structure of the Earth’s core;Asanuma;Physics and Chemistry of Minerals,2010

4. Core formation and core composition from coupled geochemical and geophysical constraints;Badro;Proceedings of the National Academy of Sciences,2015

5. Thermodynamic analysis of high-pressure phase equilibria in Fe-Si alloys, implications for the inner-core;Brosh;Physics of the Earth and Planetary Interiors,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3