3D zoning of barium in alkali feldspar

Author:

Lubbers Jordan1ORCID,Kent Adam1,Meisenheimer Douglas2,Wildenschild Dorthe2

Affiliation:

1. College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, U.S.A.

2. College of Engineering, Oregon State University, Corvallis, Oregon, 97331, U.S.A.

Abstract

Abstract Interpretation of chemical zoning within igneous minerals is critical to many petrologic studies. Zoning in minerals, however, is commonly observed in thin sections or grain mounts, which are random 2D slices of a 3D system. Use of these 2D sections to infer 3D geometries requires a set of assumptions, often not directly tested, introduces several issues, and results in partial loss of zoning information. Computed X-ray microtomography (microCT) offers a way to assess 3D zoning in minerals at high resolution. To observe 3D mineral zoning using microCT, however, requires that zoning is observable as differences in X-ray attenuation. Sanidine, with its affinity for Ba in the crystal lattice, can display large, abrupt variations in Ba that are related to various magma reservoir processes. These changes in Ba also significantly change the X-ray attenuation coefficient of sanidine, allowing for discrete mineral zones to be mapped in 3D using microCT. Here we utilize microCT to show 3D chemical zoning within natural sanidines from a suite of volcanic eruptions throughout the geologic record. We also show that changes in microCT grayscale in sanidine are largely controlled by changes in Ba. Starting with 3D mineral reconstructions, we simulate thin-section making by generating random 2D slices across a mineral zone to show that slicing orientation alone can drastically change the apparent width and slope of composition transitions between different zones. Furthermore, we find that chemical zoning in sanidine can commonly occur in more complex geometries than the commonly interpreted concentric zoning patterns. Together, these findings have important implications for methodologies that rely on the interpretation of chemical zoning within minerals and align with previously published numerical models that show how chemical gradient geometries are affected by random sectioning during common sample preparation methods (e.g., thin sections and round mounts).

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Reference82 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3