Atomic-scale characterization of the oxidation state of Ti in meteoritic hibonite: Implications for early solar system thermodynamics

Author:

Zanetta Pierre-Marie1ORCID,Manga Venkateswara Rao12,Chang Yao-Jen1,Ramprasad Tarunika2,Weber Juliane13,Beckett John R.4,Zega Thomas J.12

Affiliation:

1. Lunar and Planetary Laboratory, The University of Arizona, Tucson, Arizona 85721, U.S.A.

2. Materials Science and Engineering, The University of Arizona, Tucson, Arizona 85721, U.S.A.

3. † Present address: Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, U.S.A.

4. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A

Abstract

Abstract Calcium-aluminum-rich inclusions (CAIs) in chondritic meteorites are composed of refractory minerals thought to be the first solids to have formed in the solar nebula. Among them, hibonite, nominally CaAl12O19, holds particular interest because it can incorporate significant amounts of Ti into its crystal structure in both Ti3+ and Ti4+ oxidation states. The relative amounts of these cations that are incorporated reflect the redox conditions under which the grain formed or last equilibrated and their measurement can provide insight into the thermodynamic landscape of the early solar nebula. Here we develop a new method for the quantification of Ti oxidation states using electron energy-loss spectroscopy (EELS) in an aberration-corrected scanning transmission electron microscope (STEM) to apply it to hibonite. Using a series of Ti-bearing oxides, we find that the onset intensity of the Ti L2,3 edge decreases with increasing Ti-oxidation state, which is corroborated by simulated Ti-oxide spectra using first-principles density-functional theory. We test the relationship on a set of synthetic hibonite grains with known Ti4+/ΣTi values and apply the developed method on a hibonite grain from a compact type A inclusion in the Northwest Africa (NWA) 5028 CR2 carbonaceous chondrite. The STEM-EELS data show that the chondritic hibonite grain is zoned with a Ti4+/ΣTi ratio ranging from 0.78 ± 0.04 to 0.93 ± 0.04 over a scale of 100 nm between the core and edge of the grain, respectively. The Ti substitution sites are characterized by experimental and calculated high-angle annular-dark-field (HAADF) images and atomic-level EEL spectrum imaging. Simulated HAADF images reveal that Ti is distributed between the M2 and M4 sites while Mg sits on the M3 site. Quantitative energy-dispersive X-ray spectroscopy shows that this grain is also zoned in Al and Ti. The Mg distribution is not well correlated with that of Ti and Ti4+/ΣTi at the nanoscale. The spatial decoupling of the element composition and Ti-oxidation states suggests a multistage evolution for this hibonite grain. We hypothesize that Ti and Mg were incorporated into the structure during condensation at high temperature through multiple reactions. Transient heating, presumably in the solar nebula, adds complexity to the crystal chemistry and potentially redistributed Ti and Mg. Concurrently, the formation of oxygen vacancies as a result of a reducing gas, led to the reduction of Ti4+ to Ti3+. The multiple defect reactions occurring in this single hibonite crystal preclude a simple relationship between the Ti4+/ΣTi and the fO2 of formation. However, moving forward, these measurements are fundamental inputs for modeling of the thermodynamic conditions under which hibonite formed in the early solar nebula.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Reference105 articles.

1. X-ray diffraction study of Ti-O-C system at high temperature and in a continuous vacuum;Afir;Journal of Alloys and Compounds,1999

2. Mineralogy, textures and mode of formation of a hibonite-bearing Allende inclusion;Allen;Lunar and Planetary Science Conference Proceedings,1978

3. Modern U-Pb chronometry of meteorites: Advancing to higher time resolution reveals new problems;Amelin;Geochimica et Cosmochimica Acta,2009

4. Ni-Ti codoped hibonite ceramic pigments by combustion synthesis: Crystal structure and optical properties;Ardit;Journal of the American Ceramic Society,2016

5. The Blue Angel: I. The mineralogy and petrogenesis of a hibonite inclusion from the Murchison meteorite;Armstrong;Geochimica et Cosmochimica Acta,1982

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3