Single-crystal elasticity of (Al,Fe)-bearing bridgmanite up to 82 GPa

Author:

Fu Suyu1,Zhang Yanyao1,Okuchi Takuo23,Lin Jung-Fu1

Affiliation:

1. Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, U.S.A.

2. Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan

3. ‡ Present address: Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kyoto, Japan. E-mail: fafu@jsg.utexas.edu

Abstract

Abstract Thermoelastic properties of mantle candidate minerals are essential to our understanding of geophysical phenomena, geochemistry, and geodynamic evolutions of the silicate Earth. However, the lower-mantle mineralogy remains much debated due to the lack of single-crystal elastic moduli (Cij) and aggregate sound velocities of (Al,Fe)-bearing bridgmanite, the most abundant mineral of the planet, at the lower mantle pressure-temperature (P-T) conditions. Here we report single-crystal Cij of (Al,Fe)-bearing bridgmanite, Mg0.88Fe0.1Al0.14Si0.90O3 (Fe10-Al14-Bgm) with Fe3+/ΣFe = ~0.65, up to ~82 GPa using X-ray diffraction (XRD), Brillouin light scattering (BLS), and impulsive stimulated light scattering (ISLS) measurements in diamond-anvil cells (DACs). Two crystal platelets with orientations of (–0.50, 0.05, –0.86) and (0.65, –0.59, 0.48), that are sensitive to deriving all nine Cij, are used for compressional and shear wave velocity (νP and νS) measurements as a function of azimuthal angles over 200° at each experimental pressure. Our results show that all Cij of singe-crystal Fe10-Al14-Bgm increase monotonically with pressure with small uncertainties of 1–2% (±1σ), except C55 and C23, which have uncertainties of 3–4%. Using the third-order Eulerian finite-strain equations to model the elasticity data yields the aggregate adiabatic bulk and shear moduli and respective pressure derivatives at the reference pressure of 25 GPa: KS = 326 ± 4 GPa, µ = 211 ± 2 GPa, KS′ = 3.32 ± 0.04, and µ′ = 1.66 ± 0.02 GPa. The high-pressure aggregate νS and νP of Fe10-Al14-Bgm are 2.6–3.5% and 3.1–4.7% lower than those of MgSiO3 bridgmanite end-member, respectively. These data are used with literature reports on bridgmanite with different Fe and Al contents to quantitatively evaluate pressure and compositional effects on their elastic properties. Comparing with one-dimensional seismic profiles, our modeled velocity profiles of major lower-mantle mineral assemblages at relevant P-T suggest that the lower mantle could likely consist of about 89 vol% (Al,Fe)-bearing bridgmanite. After considering uncertainties, our best-fit model is still indistinguishable from pyrolitic or chondritic models.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Reference68 articles.

1. The chemical composition of the Earth;Allègre;Earth and Planetary Science Letters,1995

2. Elasticity and constitution of the Earth interior;Birch;Journal of Geophysical Research,1952

3. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high-pressures and 300°K;Birch;Journal of Geophysical Research: Solid Earth,1978

4. Effect of chemistry on the compressibility of silicate perovskite in the lower mantle;Boffa;Earth and Planetary Science Letters,2012

5. Non-adiabaticity in mantle convection;Bunge;Geophysical Research Letters,2001

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3