Multi-stage metasomatic Zr mineralization in the world-class Baerzhe rare earth element Nb-Zr-Be deposit, China

Author:

Wu Mingqian12ORCID,Samson Iain M.1,Qiu Kunfeng2ORCID,Zhang Dehui2

Affiliation:

1. School of the Environment, University of Windsor, Windsor, Ontario N9B 3P4, Canada

2. State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China

Abstract

Abstract Magmatic and metasomatic zircon occurs in many alkaline igneous rocks and both are potential economic reservoirs of Zr, and in some places, rare-earth elements. The Baerzhe deposit in China is an example of a system where both types of zircon occur. Previous studies recognized deuteric and variably altered magmatic zircon in a transsolvus miaskitic granite, as well as four types of metasomatic zircon in a transsolvus agpaitic granite. In this study, the relationships among, and origins of, zircon and how these relate to models for rare-metal mineralization are assessed. In situ backscattered electron (BSE) and cathodoluminescence (CL) imaging, Raman spectroscopy (including mapping), and chemistry of zircon from the agpaitic granite were conducted, combined with evaluation of published data on zircon from Baerzhe. Their textural, spectroscopic, and chemical characteristics suggest that the four types of metasomatic zircon in the agpaitic granite were not subjected to metamictization or intense alteration, with trace-element accommodation largely following a xenotime substitution mechanism. The most abundant type of metasomatic zircon in the agpaitic granite occurs in zircon-quartz pseudomorphs and exhibits comparable CL, Raman spectral, and chemical features to rare zircon that has partially replaced elpidite. This confirms that the pseudomorphs formed by complete replacement of elpidite. The pseudomorph zircon occurs in association with snowball quartz that contains inclusions of zircon, aegirine, and albite, and with secondary quartz containing aegirine. This is consistent with their coeval formation during Na metasomatism. The restriction of Na metasomatism to the agpaitic granite indicates that this event and the associated zircon formation resulted from early autometasomatism of the agpaitic phase. REE- and Be-rich zircon that replaced magmatic amphibole crystallized as a result of reaction with a REE- and Be-rich fluid that most likely was responsible for the later REE-Nb-Be mineralization that affected both the miaskitic and agpaitic granites. The miaskitic granite contains deuteric and altered magmatic zircon with different chemical characteristics to the four types of metasomatic zircon in the agpaitic granite. This suggests that secondary Zr mineralization in the miaskitic granite formed from different fluids to those that metasomatized the agpaitic granite and may also have resulted from autometasomatism. This study reveals a complex picture for the formation of zircon at Baerzhe, the character of which can vary significantly, both temporally and spatially. Such variable chemistry of the various types of zircon resulted not only from their different origins (magmatic vs. metasomatic), but also from localized water-rock interaction that involved multiple stages of fluids. Zircon in both the miaskitic and agpaitic phases was mainly the product of autometasomatism that was constrained to their parental granites.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3