Magma oxygen fugacity of mafic-ultramafic intrusions in convergent margin settings: Insights for the role of magma oxidation states on magmatic Ni-Cu sulfide mineralization

Author:

Cao Yonghua12,Wang Christina Yan12,Wei Bo12

Affiliation:

1. CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

2. Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640, China

Abstract

Abstract Oxygen fugacities (fO2) of mantle-derived mafic magmas have important controls on the sulfur status and solubility of the magmas, which are key factors to the formation of magmatic Ni-Cu sulfide deposits, particularly those in convergent margin settings. To investigate the fO2 of mafic magmas related to Ni-Cu sulfide deposits in convergent margin settings, we obtained the magma fO2 of several Ni-Cu sulfide-bearing mafic-ultramafic intrusions in the Central Asian Orogenic Belt (CAOB), North China, based on the olivine-spinel oxygen barometer and the modeling of V partitioning between olivine and melt. We also calculated the mantle fO2 on the basis of V/Sc ratios of primary magmas of these intrusions. Ni-Cu sulfide-bearing mafic-ultramafic intrusions in the CAOB include arc-related Silurian-Carboniferous ones and post-collisional Permian-Triassic ones. Arc-related intrusions formed before the closure of the paleo-Asian ocean and include the Jinbulake, Heishan, Kuwei, and Erbutu intrusions. Post-collisional intrusions were emplaced in extensional settings after the closure of the paleo-Asian ocean and include the Kalatongke, Baixintan, Huangshandong, Huangshan, Poyi, Poshi, Tulaergen, and Hongqiling No. 7 intrusions. It is clear that the magma fO2 values of all these intrusions in both settings range mostly from FMQ+0.5 (FMQ means fayalite-magnetite-quartz oxygen buffer) to FMQ+3 and are generally elevated with the fractionation of magmas, much higher than that of MORBs (FMQ-1 to FMQ+0.5). However, the mantle fO2 values of these intrusions vary from ~FMQ to ~FMQ+1.0, just slightly higher than that of mid-ocean ridge basalts (MORBs) (≤FMQ). This slight difference is interpreted as the intrusions in the CAOB may have been derived from the metasomatized mantle wedges where only minor slab-derived, oxidized components were involved. Therefore, the high-magma fO2 values of most Ni-Cu sulfide-bearing mafic-ultramafic intrusions in the CAOB were attributed to the fractionation of magmas derived from the slightly oxidized metasomatized mantle. In addition, the intrusions that host economic Ni-Cu sulfide deposits in the CAOB usually have magma fO2 of >FMQ+1.0 and sulfides with mantle-like δ34S values (–1.0 to +1.1‰), indicating that the oxidized mafic magmas may be able to dissolve enough mantle-derived sulfur to form economic Ni-Cu sulfide deposits. Oxidized mafic magmas derived from metasomatized mantle sources may be an important feature of major orogenic belts.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3