Immiscible-melt inclusions in corundum megacrysts: Microanalyses and geological implications

Author:

Xu Xi-Sheng12ORCID,Chen Xiao-Ming1,Griffin William L.12ORCID,O'Reilly Suzanne Y.12,Zhang Xi-Song1,Chen Li-Hui1

Affiliation:

1. State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China

2. ARC Centre of Excellence for Core to Crust Fluid Systems and GEMOC, Department Earth and Environmental Sciences, Macquarie University, New South Wales 2109, Australia

Abstract

Abstract Controversies on the origin of zircon, corundum, titanomagnetite, and quartz megacrysts in alkali basalts mostly reflect the lack of direct evidence of a “melt reservoir” required for their formation. Various mineral megacrysts are carried up by Cenozoic (mostly younger than 25 Ma) alkali basalts that extend more than 4000 km along eastern China. Here we report unusual inclusions in corundum megacrysts from Changle, and we attribute their origin to the existence of a FeO*-SiO2-Al2O3-ZrO2-rich melt. The inclusions, analyzed using electron microprobe and Raman microscopy, may be divided into two types. Type I inclusions are dominated by glassy materials, may exhibit a dark part in backscattered eletron (BSE) images composed of quartz, corundum, and an amorphous substance (AS-1), and a bright part in BSE images composed of baddeleyite and a second distinct amorphous substance (AS-2). Compared with AS-1, AS-2 has higher concentrations of ZrO2 and FeO* but lower concentrations of Al2O3 and SiO2. We argue that the formation temperature of Type I inclusions is ~1200 °C, and the generation of their bright and dark parts in BSE images may be attributed to the coexistence of immiscible melts. Type II inclusions are composed of zircon, quartz, and an amorphous substance (AS-3). Both types of inclusions might be derived from a similar parent melt, which is FeO*-SiO2-Al2O3-ZrO2-rich. New secondary ion mass spectroscopy (SIMS) in situ U-Pb ages of 18 Ma and 13–14 Ma for zircon inclusions suggest that the corundum megacrysts, occurring in basaltic host rocks distributed along the middle segment of the north and south-trending Tanlu fault zone, formed from precursor residual magmas related to underplating basalts stalled at the crust-mantle boundary, and were brought to the surface by entrainment in later basalts. This study provides new insights into the genesis of the corundum-related megacryst suite.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3