Vanadium micro-XANES determination of oxygen fugacity in olivine-hosted glass inclusion and groundmass glasses of martian primitive shergottite Yamato 980459

Author:

Nakada Ryoichi12,Usui Tomohiro23,Ushioda Masashi4,Takahashi Yoshio5

Affiliation:

1. Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe 200, Nankoku, Kochi 783-8502, Japan

2. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan

3. † Present address: Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210, Japan.

4. Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan

5. Department of Earth and Planetary Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan

Abstract

Abstract The redox condition of magma determines the stability and composition of crystallizing and volatile phases in martian meteorites, reflecting the evolution of the martian interior. In the current study, direct analyses on the oxidation states of V, Cr, and Fe were performed based on the X-ray absorption near-edge structure (XANES) measurements equipped with a micro-sized X-ray beam. We first applied the micro-XANES (μ-XANES) technique to the olivine-hosted glass inclusion and groundmass glass of martian meteorite Yamato 980459 (Y98), which is interpreted as representing a primary melt composition. Mass-balance calculations and XANES spectra comparisons indicated that, while chromite and pyroxene affected Cr and Fe K-edge XANES spectra, the contribution of these minerals was minimal for V. The pre-edge peak intensity of V K-edge XANES enabled the estimation of the oxygen fugacity for inclusion and groundmass glasses. The calculated oxygen fugacity (fO2) of the glass inclusions was near the Iron-Wüstite (IW) buffer (IW-0.07 ± 0.32) for the glass inclusion, whereas it was 0.9 log units more oxidized (IW+0.93 ± 0.56) for the groundmass glasses. This result suggests that the redox condition of the parent magma of Y98 evolved during magma ascent and emplacement. Since Y98 is interpreted to have evolved in a closed system, our finding suggests that fractional crystallization and/or ascent of magma potentially induces the fO2 increase. This study shows that the μ-XANES technique enables us to determine the fO2 by only measuring a single phase of glassy compounds, and thus, it is useful to discuss the redox condition of volcanic rocks even if they do not crystallize out several equilibrium phases of minerals.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3