Elastic properties and structures of pyrope glass under high pressures

Author:

Hisano Naoki1,Sakamaki Tatsuya12ORCID,Ohashi Tomonori13,Funakoshi Ken-ichi4,Higo Yuji5,Shibazaki Yuki6,Suzuki Akio1

Affiliation:

1. Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan

2. ‡ Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

3. † ORCID 0000-0002-2682-7415

4. Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan

5. Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan

6. National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan

Abstract

Abstract X-ray diffraction analysis and ultrasonic measurements of a glass with the pyrope composition were conducted to determine its structural and elastic properties at pressures from 1 atm to 12.9 GPa. Our results indicate that its structural evolution is closely related to changes in the compression wave velocity (VP), shear wave velocity (VS), and Poisson ratio. We observed three modes of pyrope glass compression. Moderate shrinkage in the intermediate-range ordered structure occurred at pressures below 6 GPa. Significant shrinkage in the intermediate-range ordering was observed at pressures between 6 and 9 GPa. We observed changes in the short-range ordered structure at pressures above 9 GPa, which were associated with an increase in the coordination number of tetrahedral cations. The absolute values of VP and VS in pyrope glass are similar to those in magnesium-bearing silicate glasses with enstatite and diopside compositions. However, the velocities are higher than those observed in sodium aluminum silicate glasses with jadeite and albite compositions. This indicates that the velocities are governed by the initial density of a glass, which is determined by its chemical composition. In terms of pressure, the velocity minimum in pyrope glass occurs at ~5 GPa, which is similar to the velocity minima in fully polymerized glasses, such as jadeite and albite. The degree of polymerization in pyrope glass is intermediate, and it has a relatively polymerized network. A drastic increase in velocity was observed when the pyrope glass was subjected to pressures above 7–8 GPa, and the velocity exceeded that observed in silicate glasses. Densification phenomenon, such as an increase in the Al coordination number, was efficiently promoted. This was because the cationic field strength of Mg2+ exceeds those of typical non-network forming cations. Magnesium cations may have an important role in controlling the behavior of silicate glass, and partially melted mantle becomes enriched with Mg under pressure. Studying Mg-bearing aluminosilicate glasses can thus help us to better understand the behavior of magma deep in the interior of the Earth.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3