Mg diffusion in forsterite from 1250–1600 °C

Author:

Jollands Michael C.12,Zhukova Irina13,O'Neill Hugh St.C.1,Hermann Jörg14

Affiliation:

1. Research School of Earth Sciences, Australian National University, 142 Mills Road, ACT 0200, Australia

2. Institute of Earth Sciences, Géopolis Building, University of Lausanne, 1015 Lausanne, Switzerland

3. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan), 388 Lumo Rd, Hongshan, Wuhan, Hubei, China 430074

4. Institute of Geology, University of Bern, Baltzerstrasse 1+3, 3012 Bern, Switzerland

Abstract

Abstract 26Mg tracer diffusion coefficients were determined in single crystals of pure synthetic forsterite (Mg2SiO4). Isotopically enriched powder sources both acted as the 26Mg source and buffered the activities of silica (aSiO2) at forsterite + protoenstatite (Mg2Si2O6) (high aSiO2) and forsterite + periclase (MgO) (low aSiO2). Experiments were conducted at atmospheric pressure between 1250 and 1600 °C, and at oxygen fugacities (fO2s) between 10–12 bars (CO-CO2 mix) and 10–0.7 bars (air). The resulting diffusion profiles were measured along the three principal crystallographic axes (a, b, and c; ||[100], ||[010], ||[001]) using laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS), with a quadrupole mass spectrometer. These measurements were corroborated by ion microprobe using the sensitive high resolution ion microprobe-reverse geometry (SHRIMP-RG) instrument. Mg tracer diffusion is anisotropic, with D[001] > D[010] > D[100], the difference in diffusion coefficients varying by about one order of magnitude at a given temperature with crystallographic orientation. Diffusion is faster in protoenstatite-buffered than periclase-buffered conditions, again with around one order of magnitude difference in diffusivity between buffering conditions. There is no apparent effect of fO2 on diffusion. A global fit to all data, including data from Chakraborty et al. (1994) and Morioka (1981) yields the relationship: log 10 D = log 10 D 0 ( m 2 s - 1 ) + 0 . 61 ( ± 0 . 03 ) log 10 a SiO 2 + - 359 ( ± 10 ) kJ / mol 2 . 303 R T where log10D0 is –3.15 (±0.08), –3.61 (±0.02), and –4.01 (± 0.05) m2 s–1 for the [001], [010], and [100] directions, respectively (1 s.d.). The LA-ICP-MS technique reproduces diffusion coefficients determined by SHRIMP-RG, albeit with slightly different absolute values of isotope ratios. This shows that LA-ICPMS, which is both accessible and rapid, is a robust analytical method for such tracer diffusion studies.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3