Thermodynamic characterization of synthetic lead-arsenate apatites with different halogen substitutions

Author:

Puzio Bartosz1ORCID,Zhang Lei2,Szymanowski Jennifer E.S.2,Burns Peter C.23ORCID,Manecki Maciej1

Affiliation:

1. Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

2. Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.

3. Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.

Abstract

Abstract Thermodynamic parameters have been measured for synthetic analogs of the mimetite-group minerals Pb5(AsO4)3X (X = OH, Cl, Br, I) belonging to the apatite supergroup. Phases precipitated from aqueous solutions under ambient conditions with well characterized structures and compositions were studied. For each phase, dissolution enthalpy was experimentally determined by oxide melt drop solution calorimetry in a molten solvent of sodium molybdate (3Na2O·4MoO3) at 976 K. The enthalpy of formation from the elements ΔHf,elo was calculated using thermochemical cycles and was −3030.6 ± 11.5, −3026.6 ± 15.8, −2967.6 ± 25.0, and −2993.1 ± 12.2 kJ/mol for Pb5.00(AsO4)3.00OH0.86(CO3)0.07, Pb5.00(AsO4)3.00Cl0.80(CO3)0.10, Pb5.00(AsO4)3.00Br0.80(CO3)0.10, and Pb5.00(AsO4)3.00I0.45OH0.35(CO3)0.10, respectively. These ΔHf,elo values exhibit typical trends for apatites: they increased (were less negative) with the increasing molar mass and ionic radius of X and decreased with the electronegativity and ionization energy of X. The compilation and comparison of data for Ca-, Pb-, P-, and As-apatites revealed correlations indicating that thermodynamic enthalpic stability is largely influenced by chemical factors (e.g., differences in electronegativities of the elements, ionization energy, or ionic characteristics of the bonds) and to a lesser extent by physical and geometric parameters in the crystal structure related to the mass and size of the X anion. Using the correlations, it was possible to estimate the value of hitherto unknown ΔHf,elo for Pb5(AsO4)3F, −3144.3 ± 66.5 kJ/mol. The observed relationships apply to the entire apatite supergroup and can be used to predict the values of ΔHf,elo for phases that have not been studied experimentally. The new data on environmentally significant phases will contribute to the modeling of mineral-water interactions, particularly for potential use in the remediation of soils and wastes contaminated with Pb and As and in the immobilization of radioactive waste containing I-129.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Reference61 articles.

1. Solubility of mimetite Pb5(AsO4)3Cl at 5–55 °C;Bajda;Environmental Chemistry,2010

2. An X-ray diffraction study of synthetic members of the pyromorphite series;Baker;American Mineralogist,1966

3. Research on influencing factors of adiabatic coating performance;Cao;Advanced Materials Research,2014

4. Pyromorphite formation and stability after quick lime neutralisation in the presence of soil and clay sorbents;Chappell;Environmental Chemistry,2007

5. High-level radioactive waste from light-water reactors;Cohen;Reviews of Modern Physics,1977

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3