Affiliation:
1. Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
2. Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.
3. Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.
Abstract
Abstract
Thermodynamic parameters have been measured for synthetic analogs of the mimetite-group minerals Pb5(AsO4)3X (X = OH, Cl, Br, I) belonging to the apatite supergroup. Phases precipitated from aqueous solutions under ambient conditions with well characterized structures and compositions were studied. For each phase, dissolution enthalpy was experimentally determined by oxide melt drop solution calorimetry in a molten solvent of sodium molybdate (3Na2O·4MoO3) at 976 K. The enthalpy of formation from the elements ΔHf,elo was calculated using thermochemical cycles and was −3030.6 ± 11.5, −3026.6 ± 15.8, −2967.6 ± 25.0, and −2993.1 ± 12.2 kJ/mol for Pb5.00(AsO4)3.00OH0.86(CO3)0.07, Pb5.00(AsO4)3.00Cl0.80(CO3)0.10, Pb5.00(AsO4)3.00Br0.80(CO3)0.10, and Pb5.00(AsO4)3.00I0.45OH0.35(CO3)0.10, respectively. These ΔHf,elo values exhibit typical trends for apatites: they increased (were less negative) with the increasing molar mass and ionic radius of X and decreased with the electronegativity and ionization energy of X. The compilation and comparison of data for Ca-, Pb-, P-, and As-apatites revealed correlations indicating that thermodynamic enthalpic stability is largely influenced by chemical factors (e.g., differences in electronegativities of the elements, ionization energy, or ionic characteristics of the bonds) and to a lesser extent by physical and geometric parameters in the crystal structure related to the mass and size of the X anion. Using the correlations, it was possible to estimate the value of hitherto unknown ΔHf,elo for Pb5(AsO4)3F, −3144.3 ± 66.5 kJ/mol. The observed relationships apply to the entire apatite supergroup and can be used to predict the values of ΔHf,elo for phases that have not been studied experimentally. The new data on environmentally significant phases will contribute to the modeling of mineral-water interactions, particularly for potential use in the remediation of soils and wastes contaminated with Pb and As and in the immobilization of radioactive waste containing I-129.
Publisher
Mineralogical Society of America
Subject
Geochemistry and Petrology,Geophysics
Reference61 articles.
1. Solubility of mimetite Pb5(AsO4)3Cl at 5–55 °C;Bajda;Environmental Chemistry,2010
2. An X-ray diffraction study of synthetic members of the pyromorphite series;Baker;American Mineralogist,1966
3. Research on influencing factors of adiabatic coating performance;Cao;Advanced Materials Research,2014
4. Pyromorphite formation and stability after quick lime neutralisation in the presence of soil and clay sorbents;Chappell;Environmental Chemistry,2007
5. High-level radioactive waste from light-water reactors;Cohen;Reviews of Modern Physics,1977
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献