Incorporation of Mg in phase Egg, AlSiO3OH: Toward a new polymorph of phase H, MgSiH2O4, a carrier of water in the deep mantle

Author:

Bindi Luca12,Bendeliani Aleksandra34,Bobrov Andrey345,Matrosova Ekaterina4,Irifune Tetsuo67

Affiliation:

1. Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy

2. C.N.R., Istituto di Geoscienze e Georisorse, Sezione di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy

3. Geological Faculty, Moscow State University, Moscow 119991, Russia

4. Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow 119991, Russia

5. Korzhinskii Institute of Experimental Mineralogy, Chernogolovka, Moscow oblast 142432, Russia

6. Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan

7. Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan

Abstract

Abstract The crystal structure and chemical composition of a crystal of Mg-bearing phase Egg with a general formula M1−x3+Mx2+SiO4H1+x (M3+ = Al, Cr; M2+ = Mg, Fe), where x = 0.35, produced by subsolidus reaction at 24 GPa and 1400 °C of components of subducted oceanic slabs (peridotite, basalt, and sediment), was analyzed by electron microprobe and single-crystal X-ray diffraction. Neglecting the enlarged unit cell and the consequent expansion of the coordination polyhedra (as expected for Mg substitution for Al), the compound was found to be topologically identical to phase Egg, AlSiO3OH, space group P21/n, with lattice parameters a = 7.2681(8), b = 4.3723(5), c = 7.1229(7) Å, β = 99.123(8)°, V = 223.49(4) Å3, and Z = 4. Bond-valence considerations lead to hypothesize the presence of hydroxyl groups only, thereby excluding the presence of the molecular water that would be present in the hypothetical end-member MgSiO3·H2O. We thus demonstrate that phase Egg, considered as one of the main players in the water cycle of the mantle, can incorporate large amounts of Mg in its structure and that there exists a solid solution with a new hypothetical MgSiH2O4 end-member, according to the substitution Al3+ ↔ Mg2+ + H+. The new hypothetical MgSiH2O4 end-member would be a polymorph of phase H, a leading candidate for delivering significant water into the deepest part of the lower mantle.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3