The nature of Zn-phyllosilicates in the nonsulfide Mina Grande and Cristal zinc deposits (Bongará District, Northern Peru): The TEM-HRTEM and AEM perspective

Author:

Balassone Giuseppina1,Scognamiglio Valentina2,Nieto Fernando3,Mondillo Nicola14,Boni Maria14,Cappelletti Piergiulio1,Arfè Giuseppe

Affiliation:

1. Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 26, 80126 Napoli, Italy

2. Via Tosi 4, Pozzuoli, Italy

3. Departamento de Mineralogía y Petrología and IACT, Universidad de Granada, Granada, Spain

4. Department of Earth Sciences, Natural History Museum, London, U.K.

Abstract

Abstract Zn-phyllosilicates are common minerals in nonsulfide Zn deposits and can give crucial information about the genesis of these oxidized mineralizations. They seldom represent the prevailing economic species but might have a significant impact on mineral processing. This study has been carried out on the Mina Grande and Cristal Zn-sulfide/nonsulfide deposits, which occur in the Bongará district (Amazonas region, northern Peru). The Cristal and Mina Grande orebodies are hosted by the sedimentary (prevailingly carbonate) successions of the Pucará Group (Condorsinga formation, Lower Jurassic), in an area affected by Neogene tectonics and characterized by Late Miocene and Pliocene-Early Pleistocene uplift phases (Andean and Quechua tectonic pulses). The Cristal deposit consists of both sulfide (sphalerite with minor pyrite and galena) and nonsulfide concentrations. The nonsulfides consists of smithsonite, hemimorphite, hydrozincite, chalcophanite, goethite, and greenockite, locally associated with Zn-bearing phyllosilicates. The Mina Grande deposit consists almost exclusively of Zn-oxidized minerals in limestone host rocks. The nonsulfides association consists of hydrozincite, hemimorphite, smithsonite, fraipontite, and Fe-(hydr)oxides, also containing a clayey fraction. The study deals with TEM-HRTEM and AEM investigations on clayey materials, to determine their crystal-chemical features and the origin of the complex Zn-clays-bearing parageneses. In both deposits, Zn-bearing illites (1Md and 2M polytypes) and I/S clay minerals (I3) are the main detected phases, with few compositions close to (Zn-bearing) muscovite. In the clayey fraction at Mina Grande, fraipontite, a Zn-bearing mica called K-deficient hendricksite, and (Zn-bearing) kaolinite also occur. Zn-illites and smectites (always containing Zn in variable amounts) characterize the mineral association at Cristal. The investigated compositional gap between di- and tri-octahedral Zn-phyllosilicates gives indications on the genetic relationships between them and advances on the knowledge of these species. The present work gives an insight into the Zn-bearing phyllosilicates systems by determining the amount/mode of metal incorporation in their lattices and understanding the relationships of natural occurring clay-rich complex associations, which can act as models for possible synthetic counterparts.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3