Raman signatures of the distortion and stability of MgCO3 to 75 GPa

Author:

Zhao Chaoshuai1,Lv Chaojia1,Xu Liangxu12,Liang Lin13,Liu Jin1

Affiliation:

1. Center for High Pressure Science and Technology Advanced Research (HPSTAR), 100094 Beijing, China

2. College of Materials Science and Engineering, Nanjing Tech University, 211816 Jiangsu, China

3. School of Earth and Space Sciences, Peking University, 100871 Beijing, China

Abstract

Abstract Knowledge of the stability of carbonate minerals at high pressure is essential to better understand the carbon cycle deep inside the Earth. The evolution of Raman modes of carbonates with increasing pressure can straightforwardly illustrate lattice softening and stiffening. Here, we report Raman modes of natural magnesite MgCO3 up to 75 GPa at room temperature using helium as a pressure-transmitting medium (PTM). Our Raman spectra of MgCO3 show the splitting of T and ν4 modes initiated at approximate 30 and 50 GPa, respectively, which may be associated with its lattice distortions. The MgCO3 structure was referred to as MgCO3-Ib at 30–50 GPa and as MgCO3-Ic at 50–75 GPa. Intriguingly, at 75.4 GPa some new vibrational signatures appeared around 250–350 and ~800 cm–1. The emergence of these Raman bands in MgCO3 under relatively hydrostatic conditions is consistent with the onset pressure of structural transition to MgCO3-II revealed by theoretical predictions and high-pressure and high-temperature experiments. This study suggests that hydrostatic conditions may significantly affect the structural evolution of MgCO3 with increasing pressure, which shall be considered for modeling the carbon cycle in the Earth's lower mantle.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3