Fluid source and metal precipitation mechanism of sediment-hosted Chang'an orogenic gold deposit, SW China: Constraints from sulfide texture, trace element, S, Pb, and He-Ar isotopes and calcite C-O isotopes

Author:

Yang Lin1,Wang Qingfei1ORCID,Large Ross R.2,Mukherjee Indrani23,Deng Jun1,Li Huajian1,Yu Huazhi1,Wang Xuan1

Affiliation:

1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China

2. Centre for Ore Deposit and Earth Sciences (CODES), University of Tasmania, Private Bag 126, Hobart, Tasmania 7001, Australia

3. † Orcid 0000-0002-2808-1821

Abstract

AbstractThe source of fluids and their mechanism of metal precipitation in sediment-hosted, disseminated orogenic gold deposits are ambiguous. Pyrite texture, trace element, S, Pb, and He-Ar isotope compositions of sulfides and C-O isotope data of calcite from Chang'an orogenic gold deposit in the Ailaoshan orogenic belt, southwest (SW) China, were studied to provide a new genetic model for the sediment-hosted orogenic gold deposit, furthering knowledge of the source of fluids and their mechanism of metal precipitation. Orebodies at Chang'an are mainly hosted by Ordovician turbidite with a few in Oligocene syenite. Two stages of mineralization have been identified in the deposit: stage I disseminated quartz-arsenopyrite-pyrite and stage II veined quartz-calcite-polymetallic sulfides. Five generations of pyrite have been identified in turbidite: pre-ore syn-sedimentary pyrite, pyI-1, and pyI-2 in stage I, and pyII-1 and pyII-2 in stage II, and an unzoned pyrite population developed in syenite. PyI-1 commonly overgrows syn-sedimentary pyrite with irregular boundaries and contains arsenopyrite, galena, chalcopyrite, and electrum inclusions along the boundaries. PyI-1 is overgrown by thin and inclusion-free pyI-2, and crosscut by pyII-1, which is rimmed by pyII-2.The syn-sedimentary pyrite is distributed parallel to the sedimentary bedding and contains As (620.8 ppm), Pb (61.6 ppm), Ni (59.8 ppm), Mo (54.4 ppm), Co (23.4 ppm), and Cu (13.0 ppm) with low-Au content of 0.06 ppm. This pyrite has δ34S values of −18.1 to +30.4‰ and high-radiogenic Pb isotope ratios (average 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb of 19.05, 15.86, and 39.87, respectively). PyI-1 and coexisting arsenopyrite are enriched in invisible Au (up to 227.1 and 353.3 ppm, respectively), As, Ni, Cu, and Pb, while pyI-2 contain much lower trace element abundances relative to pyI-1 and arsenopyrite. Partial replacement of syn-sedimentary pyrite by pyI-1 plus arsenopyrite, galena, chalcopyrite, and electrum, and similar Pb isotope ratios between syn-sedimentary pyrite and pyI-1 indicate that reaction of external deep Au-rich fluids with syn-sedimentary pyrite is responsible for gold precipitation in stage I. PyI-1, arsenopyrite, and pyI-2 show a narrower δ34S range of −3.2 to 7.1‰ relative to syn-sedimentary pyrite, demonstrating that the fluid-pyrite interaction has homogenized the sulfur. The unzoned pyrite in syenite has similar mineral inclusions (arsenopyrite, galena, etc.), δ34S values (+0.6 to 6.3‰) and Pb isotope ratios to pyI-1, but much lower trace element abundances relative to pyI-1. It may be attributed to different reactions of similar fluids with different wall-rocks. PyII-1 and pyII-2 in stage II contain elevated As, Pb, Cu, Sb, Zn, and Ag with low mean Au content (3.3 ppm) and have δ34S ranges of −2.8 to +1.2‰ and −6.2 and −0.8‰, respectively. Galena in stage II has lower radiogenic Pb isotope ratios than stage I pyrites, indicative of a different Pb source or fluid evolution. The gases released from a mixture of pyII-1-pyII-2 have R/Ra of 0.38 to 0.98 and 40Ar*/4He of 0.50 to 1.34, falling between the fields of mantle-derived and crustal fluids. Late ore calcites have δ13CPDB of −8.7 to 2.7‰ and δ18OSMOW of 8.05 to 25.58‰, also plotting between sedimentary carbonate and mantle fields. These signatures indicate that ore fluids in stage II are base metal-rich fluids with a small amount of contribution from the mantle. Different ore assemblages, trace element composition and isotope data between stages I and II at Chang'an suggest that the deposit experienced an evolution from early Au-rich fluids to late base metal-rich ones. This study highlights that ore metals in sediment-hosted disseminated orogenic gold deposits may be sourced from both deep fluids and local wall-rock, and that fluid-rock interaction behaved as a key control on ore precipitation.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3