Thermoelasticity of tremolite amphibole: Geophysical implications

Author:

Peng Ye1,Mookherjee Mainak1

Affiliation:

1. Earth Materials Laboratory, Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, U.S.A.

Abstract

Abstract We investigated the structure, equation of state, thermodynamics, and elastic properties of tremolite amphibole [Ca2Mg5Si8O22(OH)2] up to 10 GPa and 2000 K, using first principles simulations based on density functional perturbation theory. We found that at 300 K, the pressure-volume results can be adequately described by a third-order Birch-Murnaghan equation of state with bulk moduli K0 of 78.5 and 66.3 GPa based on local density approximation (LDA) and generalized gradient approximation (GGA), respectively. We also derived its coefficients of the elastic tensor based on LDA and GGA and found that the LDA result is in good agreement with the experimental results. At 300 K, the shear modulus G0 is 58.0 GPa based on LDA. The pressure derivative of the bulk modulus K′ is 5.9, while that of the shear modulus G′ is 1.3. The second Grüneisen parameter, or δT = [–1/(αKT)](∂KT/∂T)P, is 3.3 based on LDA. We found that at ambient conditions, tremolite is elastically anisotropic with the compressional wave velocity anisotropy AVP being 34.6% and the shear wave velocity anisotropy AVS being 27.5%. At higher pressure corresponding to the thermodynamic stability of tremolite, i.e., ~3 GPa, the AVP reduces to 29.5%, whereas AVS increases to 30.8%. To evaluate whether the presence of hydrous phases such as amphibole and phlogopite could account for the observed shear wave velocity (VS) anomaly at the mid-lithospheric discontinuity (MLD), we used the thermoelasticities of tremolite (as a proxy for other amphiboles), phlogopite, and major mantle minerals to construct synthetic velocity profiles. We noted that at depths corresponding to the mid-lithosphere, the presence of 25 vol% amphibole and 1 vol% phlogopite could account for a VS reduction of 2.3%. Thus based on our thermoelasticity results on tremolite amphibole, it seems that mantle metasomatism could partly explain the MLD.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3