High-pressure silica phase transitions: Implications for deep mantle dynamics and silica crystallization in the protocore

Author:

Das Pratik Kr.1,Mohn Chris E.1,Brodholt John P.12,Trønnes Reidar G.13

Affiliation:

1. Centre for Earth Evolution and Dynamics, University of Oslo, N-0315 Oslo, Norway

2. Department of Earth Sciences, University College London, London WC1E 6BT, U.K.

3. Natural History Museum, University of Oslo, 0318 Oslo, Norway

Abstract

Abstract The subsolidus phase diagram of silica in the 80–220 GPa pressure range was determined by density functional theory (DFT). The transition pressures calculated using the generalized gradient approximation (GGA) in the static limit (at 0 K, without zero point vibrational energy) for the β-stishovite (CaCl2-structure) to seifertite and the seifertite to pyrite-type transitions are 95 and 213 GPa, respectively. These are in good agreement with those calculated using hybrid functionals, giving transition pressures of 96 and 215 GPa. This indicates that previous local density approximation (LDA) results underestimate the transition pressure by 10–15 GPa. Density functional perturbation theory calculations, carried out using GGA within the quasi-harmonic approximations, give Clapeyron slopes of 5.4 and −2.8 MPa/K for the β-stishovite to seifertite and seifertite to pyrite-type transitions, respectively. This suggests that the seifertite-forming transition occurs at 109 GPa (470 km above the core-mantle boundary, CMB) at an ambient mantle geotherm, whereas the pyrite-type transition occurs at 200 GPa (620 km below the CMB) at 4700 K, which is close to the core adiabat. We also calculate the equation of state and show that the stability of seifertite in the lowermost mantle contributes negative buoyancy to recycled oceanic crust, although not as much as in some previous studies. Nevertheless, the increased density of seifertite over β-stishovite may lead to layers with elevated proportions of basaltic material within the large low S-wave velocity provinces. The seifertite to pyrite-type silica transition in the outer core will affect the silica liquidus surface in the system Fe-Si-O and forms a basis for further investigations of silica crystallization in the protocore.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3