Petrographic and spectral study of hydrothermal mineralization in drill core from Hawaii: A potential analog to alteration in the martian subsurface

Author:

Calvin Wendy M.12ORCID,Lautze Nicole3,Moore Joe4,Thomas Donald3,Haskins Eric3,Rasmussen Brandon P.1

Affiliation:

1. Department of Geological Sciences, University of Nevada, Reno, Nevada 89577, U.S.A.

2. † Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

3. Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, Hawaii 96822, U.S.A.

4. Energy and Geoscience Institute, University of Utah, Salt Lake City, Utah, 84108, U.S.A.

Abstract

Abstract Continuous rock core was collected for 1764 m (5786’) on the Pohakuloa Army Training base near the center of the big island of Hawaii. The core traverses basaltic lava flows from the volcano's shield-building phase, and perched aquifers and higher temperature groundwaters were encountered. The collected samples record water-rock interactions of basaltic materials in a setting that may be a model for groundwater interactions on Mars. We collected visible and infrared point spectra of materials in the lowest portion of the core, where alteration was noted to become more prominent. We identified three types of phyllosilicate spectral signatures and three types of zeolites. The phyllosilicates show similarity to those identified on Mars using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Based on the field survey, 25 depths were selected for sampling and petrographic analysis of thin sections. The spectral data and thin section work have a strong agreement in the types of materials identified by the two different techniques. Both the spectral and petrographic data indicate low to moderate temperature geothermal alteration occurred in the lower half of the core. The field spectra are a useful reconnaissance tool for selecting mineralogic diversity for subsequent higher resolution and more time-consuming laboratory analysis.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3