Elastic properties of majoritic garnet inclusions in diamonds and the seismic signature of pyroxenites in the Earth's upper mantle

Author:

Koemets Iuliia1,Satta Niccolò12,Marquardt Hauke13,Kiseeva Ekaterina S.34,Kurnosov Alexander1,Stachel Thomas5,Harris Jeff W.6,Dubrovinsky Leonid1

Affiliation:

1. Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany

2. † Orcid 0000-0003-0397-6511

3. University of Oxford, Department of Earth Sciences, South Parks Road, Oxford, OX1 3AN, U.K.

4. University College Cork, School of Biological, Earth and Environmental Sciences, Distillery Fields, North Mall, Cork T23 N73K, Ireland

5. Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada

6. School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, U.K.

Abstract

Abstract Majoritic garnet has been predicted to be a major component of peridotite and eclogite in Earth's deep upper mantle (>250 km) and transition zone. The investigation of mineral inclusions in diamond confirms this prediction, but there is reported evidence of other majorite-bearing lithologies, intermediate between peridotitic and eclogitic, present in the mantle transition zone. If these lithologies are derived from olivine-free pyroxenites, then at mantle transition zone pressures majorite may form monomineralic or almost monomineralic garnetite layers. Since majoritic garnet is presumably the seismically fastest major phase in the lowermost upper mantle, the existence of such majorite layers might produce a detectable seismic signature. However, a test of this hypothesis is hampered by the absence of sound wave velocity measurements of majoritic garnets with relevant chemical compositions, since previous measurements have been mostly limited to synthetic majorite samples with relatively simple compositions. In an attempt to evaluate the seismic signature of a pyroxenitic garnet layer, we measured the sound wave velocities of three natural majoritic garnet inclusions in diamond by Brillouin spectroscopy at ambient conditions. The chosen natural garnets derive from depths between 220 and 470 km and are plausible candidates to have formed at the interface between peridotite and carbonated eclogite. They contain elevated amounts (12–30%) of ferric iron, possibly produced during redox reactions that form diamond from carbonate. Based on our data, we model the velocity and seismic impedance contrasts between a possible pyroxenitic garnet layer and the surrounding peridotitic mantle. For a mineral assemblage that would be stable at a depth of 350 km, the median formation depth of our samples, we found velocities in pyroxenite at ambient conditions to be higher by 1.9(6)% for shear waves and 3.3(5)% for compressional waves compared to peridotite (numbers in parentheses refer to uncertainties in the last given digit), and by 1.3(13)% for shear waves and 2.4(10)% for compressional waves compared to eclogite. As a result of increased density in the pyroxenitic layer, expected seismic impedance contrasts across the interface between the monomineralic majorite layer and the adjacent rocks are about 5–6% at the majorite-eclogite-interface and 10–12% at the majoriteperidotite-boundary. Given a large enough thickness of the garnetite layer, velocity and impedance differences of this magnitude could become seismologically detectable.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3