Extraterrestrial, shock-formed, cage-like nanostructured carbonaceous materials

Author:

Németh Péter12ORCID,Garvie Laurence A.J.23

Affiliation:

1. Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Magyar Tudósok Körútja 2, Hungary

2. School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287-6004, U.S.A.

3. Center for Meteorite Studies, Arizona State University, Tempe, Arizona 85287-6004, U.S.A.

Abstract

Abstract Shock caused by impacts can convert carbonaceous material to diamond. During this transition, new materials can form that depend on the structure of the starting carbonaceous materials and the shock conditions. Here we report the discovery of cage-like nanostructured carbonaceous materials, including carbon nano-onions and bucky-diamonds, formed through extraterrestrial impacts in the Gujba (CBa) meteorite. The nano-onions are fullerene-type materials and range from 5 to 20 nm; the majority shows a graphitic core-shell structure, and some are characterized by fully curved, onion-like graphitic shells. The core is either filled with carbonaceous material or empty. We show the first, natural, 4 nm sized bucky-diamond, which is a type of carbon nano-onion consisting of multilayer graphitic shells surrounding a diamond core. We propose that the nano-onions formed during shock metamorphism, either the shock or the release wave, of the pre-existing primitive carbonaceous material that included nanodiamonds, poorly ordered graphitic material, and amorphous carbonaceous nanospheres. Bucky-diamonds could have formed either through the high-pressure transformation of nano-onions, or as an intermediate material in the high-temperature transformation of nanodiamond to nano-onion. Impact processing of planetary materials was and is a common process in our solar system, and by extension, throughout extrasolar planetary bodies. Together with our previous discovery of interstratified graphite-diamond in Gujba, our new findings extend the range of nano-structured carbonaceous materials formed in nature. Shock-formed nano-onions and bucky-diamonds are fullerene-type structures, and as such they could contribute to the astronomical 217.5 nm absorption feature.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3