The composition of garnet in granite and pegmatite from the Gangdese orogen in southeastern Tibet: Constraints on pegmatite petrogenesis

Author:

Yu Meng1,Xia Qiong-Xia12ORCID,Zheng Yong-Fei12,Zhao Zi-Fu3ORCID,Chen Yi-Xiang12,Chen Ren-Xu124ORCID,Luo Xu1,Li Wan-Cai12,Xu Haijun5

Affiliation:

1. CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. CAS Center for Excellence in Comparative Planetology, Hefei 230026, China

3. † ORCID 0000-0002-6499-2825

4. ‡ ORCID 0000-0003-1517-8373

5. State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Sciences, Wuhan 430074, China

Abstract

Abstract Two generations of garnet are recognized in a granite and a pegmatite from the Gangdese orogen in southeastern Tibet on the basis of a combined study of petrography, major and trace element profiles, and garnet O isotopes. Zircon U-Pb dating and Hf-O isotope compositions also help constrain the origin of both granite and pegmatite. The first generation of garnet (Grt-I) occurs as residues in the center of garnet grains, and it represents an early stage of nucleation related to magmatic-hydrothermal fluids. Grt-I is dark in backscattered electron (BSE) images, rich in spessartine, and poor in almandine and grossular. Its chondrite-normalized rare earth element (REE) patterns show obvious negative Eu anomalies and depletion in heavy REE (HREE) relative to middle REE (MREE). The second generation of pegmatite garnet (Grt-II) occurs as rims of euhedral garnets or as patches in Grt-I domains of the pegmatite, and it crystallized after dissolution of the preexisting pegmatite garnet (Grt-I domains) in the presence of the granitic magma. Compared with Grt-I, Grt-II is bright in BSE images, poor in spessartine, and rich in almandine and grossular contents. Its chondrite-normalized REE patterns exhibit obvious negative Eu anomalies but enrichment in HREE relative to MREE. The elevation of grossular and HREE contents for Grt-II relative to Grt-I domains indicate that the granitic magma had higher contents of Ca than the magmatic-hydrothermal fluids. The garnets in the granite, from core to rim, display homogenous profiles in their spessartine, almandine, and pyrope contents but increasing grossular and decreasing REE contents. They are typical of magmatic garnets that crystallized from the granitic magma. Ti-in-zircon temperatures demonstrate that the granite and pegmatite may share the similar temperatures for their crystallization. Grt-II domains in the pegmatite garnet have the same major and trace element compositions as the granite garnet, suggesting that the pegmatite Grt-II domains crystallized from the same granitic magma. Therefore, the pegmatite crystallized at first from early magmatic-hydrothermal fluids, producing small amounts of Grt-I, and the fluids then mixed with the surrounding granitic magma. The U-Pb dating and Hf-O isotope analyses of zircons from the granite and pegmatite yield almost the same U-Pb ages of 77–79 Ma, positive eHf(t) values of 5.6 to 11.9, and d18O values of 5.2 to 7.1‰. These data indicate that the granite and pegmatite were both derived from reworking of the juvenile crust in the newly accreted continental margin prior to the continental collision in the Cenozoic.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3