Experimental evaluation of a new H2O-independent thermometer based on olivine-melt Ni partitioning at crustal pressure

Author:

Pu Xiaofei1ORCID,Moore Gordon M.2,Lange Rebecca A.1,Touran Jack P.2,Gagnon Joel E.3

Affiliation:

1. Department of Earth and Environmental Sciences, University of Michigan, 1100 North University Avenue, Ann Arbor, Michigan 48109, U.S.A.

2. NASA Johnson Space Center in Astromaterials Research and Exploration Science, 2101 NASA Parkway, Houston, Texas 77058, U.S.A.

3. Department of Earth and Environmental Sciences, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada

Abstract

Abstract An olivine-melt thermometer based on the partitioning of Ni (DNiOl/liq) was hypothesized by Pu et al. (2017) to have a negligible dependence on dissolved water in the melt (and pressure variations from 0–1 GPa), in marked contrast to thermometers based on DMgOl/liq. In this study, 15 olivine-melt equilibrium experiments were conducted on a basaltic glass starting material (9.6 wt% MgO; 353 ppm Ni) to test this hypothesis by comparing the effect of dissolved H2O in the melt on DMgOl/liq and DNiOl/liq on the same set of experiments. Results are presented for six anhydrous experiments at 1 bar, two anhydrous experiments at 0.5 GPa, and seven hydrous experiments at 0.5 GPa. Analyzed olivine and glass compositions in the quenched run products were used to calculate DMgOl/liq and DNiOl/liq values for each experiment, which in turn permit temperature to be calculated with the Mg- and Ni-thermometers calibrated in Pu et al. (2017) on anhydrous, 1-bar experiments from the literature. The Ni-thermometer recovers the temperatures of all 15 experiments from this study with an average deviation of –3 °C, including those with up to 4.3 wt% H2O dissolved in the melt. In contrast, the Mg-thermometer recovers the anhydrous, 1-bar experimental temperatures within +14 °C on average, but overestimates the hydrous experimental temperatures by +49 to +127 °C, with an average of +83 °C. When the Mg-thermometer of Putirka et al. (2007) is applied, which includes a correction for analyzed H2O (≤4.3 wt%) in the quenched melts of the run products, all experimental temperatures are recovered with an average (±1σ) deviation of +7 °C. The combined results show that DNiOl/liq has a negligible dependence on dissolved water in the melt (≤4.3 wt% H2O), which is in marked contrast to the strong dependence of DMgOl/liq on water in the melt. An understanding of why DNiOl/liq is insensitive to dissolved water, unlike DMgOl/liq, is obtained from spectroscopic evidence in the literature, which shows that Ni2+ (transition metal) and Mg2+ (alkaline earth metal) have distinctly different average coordination numbers (predominantly fourfold and sixfold, respectively) in silicate melts and that fourfold-coordinated Ni2+ is unaffected by the presence of dissolved water in the melt. This difference in coordination number explains why DNiOl/liq and DMgOl/liq each have a different dependence on pressure, anhydrous melt composition, and melt water content. Application of the Ni-thermometer of Pu et al. (2017) to five natural samples from the Mexican arc, for which H2O contents (3.6–6.7 wt%) in olivine-hosted melt inclusions are reported in the literature, leads to temperatures that match those obtained from the Putirka et al. (2007) Mg-thermometer that corrects for analyzed H2O contents. This study demonstrates that a thermometer based on DNiOl/liq can be applied to hydrous basalts at crustal depths without the need to correct for dissolved water content or pressure.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3