Tungsten mineralization during the evolution of a magmatic-hydrothermal system: Mineralogical evidence from the Xihuashan rare-metal granite in South China

Author:

Li Jie123,Huang Xiao-Long12ORCID,Fu Qi4,Li Wu-Xian12

Affiliation:

1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

2. CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China

3. Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

4. Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204-5007, U.S.A.

Abstract

Abstract Tungsten deposits are usually associated with granitic intrusions that record a long and complex evolution of the magmatic-hydrothermal system. However, the genetic link between magmatic-hydrothermal evolution and tungsten mineralization remains unclear. The Xihuashan tungsten deposit in South China, an important vein-type wolframite deposit, is closely associated with greisen and multi-phase intrusive activity that produced biotite granite, two-mica granite, and muscovite granite. From the biotite granite to the two-mica granite to the muscovite granite, micas vary from siderophyllite to lithian siderophyllite, with decreasing K/Rb and Nb/Ta ratios and increasing Rb and Cs contents. The zoned micas in the muscovite granite and greisen display fluorine-depleted rims, reflecting subsolidus replacement by external aqueous fluids. The presence of siderite indicates a Fe-, Mn-, and CO2-rich fluid under reducing conditions. The micas in the greisen have higher-F contents and lower Fe3+/Fe2+ ratios than those in the muscovite granite, suggesting that the fluids contributing to greisen formation had a relatively high-fluorine content and were reduced. The increase of CO2 in the fluid enhanced its ability to unlock W from melts/rocks into fluids. The reducing environment also facilitated the tungsten mineralization. During greisenization, the pH value of the fluid increased, which destabilized the polymeric tungstates to form WO42–. The mixture of W-rich solution and Fe-, Mn-rich external fluid eventually precipitated as vein-type wolframite in favorable locations. An empirical equation (Li2O = 0.0748 × F2 + 0.0893 × F) was introduced for estimating the Li2O contents of hydrothermal micas using the F contents determined by EPMA.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3