Interlayer energy of pyrophyllite: Implications for macroscopic friction

Author:

Sakuma Hiroshi1,Kawai Kenji2,Kogure Toshihiro2

Affiliation:

1. Functional Clay Materials Group, National Institute for Materials Science, Tsukuba, Ibaraki, 305-0044, Japan

2. Department of Earth and Planetary Science, School of Science, University of Tokyo, Tokyo 113-0033, Japan

Abstract

Abstract Deformation of phyllosilicate can control the dynamics of the Earth's crust. The phenomenological relationship between stress and deformation is known for some typical phyllosilicates; however, the underlying physics originating from the crystal structures is poorly understood. In this study, the deformation mechanism of pyrophyllite along basal planes was revealed through density functional theory calculations and atomic-scale theory of friction. The stable and metastable interlayer structures formed by interlayer slide were consistent with the experimental results reported previously by high-resolution transmission electron microscopy. The difference in potential energies between stable and metastable interlayer structures can be interpreted as the difference in the stacking of dioctahedral sheets between the adjacent layers. The estimated friction coefficient of the pyrophyllite between adjacent layers was consistent with the results of atomic force microscopy, suggesting that atomic-scale friction can be adequately estimated by this method. The calculated shear stress in our simulations has a linear relationship with the normal stress and has no significant crystallographic dependence on sliding direction along the basal planes. The crystallographic isotropy of interlayer friction is explained by the absence of interlayer cations in pyrophyllite, while muscovite showed crystallographic anisotropy as observed in previous studies. The macroscopic friction of a single crystal of pyrophyllite was estimated from atomic-scale friction by using the area of contact. The macroscopic friction coefficient of ideal interlayer sliding was estimated to be 0.134, which was smaller than a reported value (0.276) in shear experiments conducted for wet polycrystalline gouge layers. This difference can be primarily explained by the degree of orientation of pyrophyllite particles in the gouge layers. The friction coefficient estimated by a simple model of randomly oriented pyrophyllite gouge layer was 0.203 ± 0.001, which was similar to the reported value of 0.276 and clearly smaller than the values (0.6–0.85) of common minerals estimated by the empirical Byerlee's law. These results indicate that weak interlayer friction of phyllosilicates has a large effect on the low frictional strength of gouge layers in natural faults. Our methodology and results are useful for understanding the physics behind the phenomenological friction laws of phyllosilicate gouge.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3