Water transport by subduction: Clues from garnet of Erzgebirge UHP eclogite

Author:

Schmädicke Esther1,Gose Jürgen1

Affiliation:

1. GeoZentrum Nordbayern, University Erlangen-Nürnberg, Schlossgarten 5a, D-91054 Erlangen, Germany

Abstract

Abstract A key question concerning the water budget of Earth’s mantle is how much water is actually recycled into the mantle by the subduction of eclogitized oceanic crust. Hydrous phases are stable only in quartz eclogite not coesite eclogite so that water transport to greater depths is mainly governed by structural water in omphacite and garnet. Here we explore if garnet can be used as a proxy to assess the amount of this water. Available data on the water contents of garnet in coesite eclogite vary over orders of magnitude, from a few up to ca. 2000 ppm. By implication, the maximum bulk-rock water contents are unrealistically high (wt% level). New data from the Erzgebirge indicate moderate amounts of structural H2O stored in garnet (43–84 ppm), omphacite (400–820 ppm), and in the bulk coesite eclogite (ca. 280–460 ppm). Higher garnet water contents occur, but these are not primary features. They are related to molecular water in fluid inclusions that can be attributed to eclogite-facies fluid influx postdating the metamorphic peak. Fluid influx also caused the uptake of additional structural water in garnet domains close to fluid inclusions. Such secondary H2O incorporation is only possible in the case of primary water-deficiency indicating that garnet hosted less water than it was able to store. This is insofar astonishing as comparably high H2O amounts are liberated by the breakdown of prograde eclogite-facies hydrous minerals as a result of ultrahigh-pressure (UHP) metamorphism. Judging from Erzgebirge quartz eclogite, dehydration of 5–10% hydrous minerals (±equal portions of zoisite+calcic amphibole) produces 1500–3000 ppm water. We infer that the largest part of the liberated water escaped, probably due to kinetic reasons, and hydrated exhuming UHP slices in the hanging-wall. Depending on the physical conditions, water influx in eclogite during exhumation (1) produces fluid inclusions and simultaneously enhances the structural water content of nominally anhydrous minerals—as in the Erzgebirge—and/or (2) it may give rise to retrograde hydrous minerals. We conclude that eclogite transports moderate quantities of water (several hundred parts per million) to mantle depths beyond 100 km, an amount equivalent to that in ca. 1% calcic amphibole.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3