Machine learning in mental health: A systematic scoping review of methods and applications

Author:

Shatte Adrian,Hutchinson Delyse,Teague Samantha

Abstract

Objective This paper aims to synthesise the literature on machine learning (ML) and big data applications for mental health, highlighting current research and applications in practice. Materials and MethodsEight health and information technology research databases were searched using the terms “big data” or “machine learning” and “mental health”. Articles were assessed by two reviewers, and data were extracted on the article’s mental health application, ML technique, data type and size, and study results. Articles were then synthesised via narrative review.ResultsThree hundred papers focusing on the application of ML to mental health were identified. Four main application domains emerged in the literature, including: (i) detection and diagnosis; (ii) prognosis, treatment and support; (iii) public health; and, (iv) research and clinical administration. The most common mental health conditions addressed included depression, schizophrenia, and Alzheimer’s Disease. ML techniques used included support vector machines, decision trees, neural networks, latent dirichlet allocation, and clustering.Discussion and ConclusionOverall, the application of ML to mental health has demonstrated a range of benefits across the areas of diagnosis, treatment and support, research, and clinical administration. With the majority of studies identified focusing on the detection and diagnosis of mental health conditions, it is evident that there is significant room for the application of ML to improve other areas of psychological functioning. The challenges of using ML techniques are discussed, as well as opportunities to improve and advance the field.

Publisher

Center for Open Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-informed mental health care: A Bibliometric Analysis and Systematic Review (Preprint);2023-03-04

2. An Research on Online Counseling Platform Based on the Artificial Intelligence Technology;2022 2nd International Conference on Bioinformatics and Intelligent Computing;2022-01-21

3. Classification of mental illness from user content on social media;INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE “TECHNOLOGY IN AGRICULTURE, ENERGY AND ECOLOGY” (TAEE2022);2022

4. Predicting Symptoms of Depression and Anxiety Using Smartphone and Wearable Data;Frontiers in Psychiatry;2021-01-28

5. schema: an open-source, distributed mobile platform for deploying mHealth research tools and interventions;BMC Medical Research Methodology;2020-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3