Cancer immunotherapy, which attempts to activate or stimulate the immune system to treat cancer, has become the standard of treatment. Although some cancer vaccines are efficiently translated, they have not yet reached the same degree of success as infectious disease immunizations. A primary factor is the low immunogenicity of the tumor and related antigens. Unlike viruses, cancer cells emerge from somatic mutations in patients' healthy tissues, making it harder for the immune system to properly detect tumor cells. Biogenic nanoparticles have recently been highlighted as a solution to address some of the issues with creating anticancer vaccinations. Antigens, medication delivery, and others all benefit from biogenic nanoparticles. Biogenic nanoparticles have long been researched as a vaccine. Biogenic nanoparticles-based platforms, like particular VLPs, inherently activate inflammatory responses and may be increased with TAAs evaluated for antigen-specific antitumor responses to patient malignancies. OMVs and OMV-coated nanoparticles can be multiantigenic and immunostimulative in the box. PAMPs present in OMVs can activate innate immunity while suppressing tumor development. A range of cells, including immune and malignant cells, produce exosomes and play a critical role in cell-to-cell communication. Exosomes may contain interesting materials such as specific drugs, proteins, DNA, and RNA species, and their function depends on host cells. In cancer vaccines, however, these biogenic nanoparticles still have some limitations. Transferring tumor antigens and adjuvants to the secondary lymphoid system is a critical issue for biogenic nanoparticles. OMVs lack tumor antigens. Adjuvants are low in VLPs and exosomes. Furthermore, enhancing the protective response of biogenic nanoparticles, generating protective antigens in these nanoparticles and reducing the toxicity of nanoparticles are all challenges in cancer immunotherapy. There has been a lot of information regarding biogenic nanoparticles created by a variety of bacteria or cells in the area of bacterial vesicle research for a long time, but there has been a dearth of in-depth study focused on identifying molecules crucial to biogenesis or biogenic nanoparticles. Many basic questions remain unanswered here. Which envelope factors release biogenic nanoparticles? What signals and mechanisms regulate biogenic biogenic nanoparticles? Understanding these and other concepts as a cancer immunotherapy delivery technique is vital for the future development of biogenic nanoparticles. Future investigations are anticipated to begin to address these fundamental issues and increase our knowledge.