Challenges of a small world analysis for the continuous monitoring of behavior in mice

Author:

Bermudez Contreras EdgarORCID,sutherland rob,Mohajerani Majid H,Whishaw Ian Q

Abstract

The automation of monitoring and analysis of mouse behaviour in a homecage can be obtained from continuous video records with machine learning and computer vision. The approach of recreating a mouse’s “real world” behavior and laboratory test behavior in the “small world” of a laboratory cage can provide insights into phenotypical expression of mouse genotypes, development and aging, and neurological disease. Algorithms identify behavioral acts (walk, rear), actions (sleep duration, distance travelled), organized patterns of movement (home base activity and excursions) over extended periods of time. In addition, performance on specific tests can be incorporated within a mouse’s living arrangement. Here we review approaches to engineering a small world and state of the art machine learning analyses for automated study of mouse homecage behavior. We highlight advantages and limitations of these approaches as a supplement to acute behavioral testing methodology.

Publisher

Center for Open Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3