Spontaneous, volitional spatial exploration is crucial for building up a cognitive map of the environment. However, decades of research have primarily measured the fidelity of cognitive maps after discrete, controlled learning episodes. We know little about how cognitive maps are formed during naturalistic free exploration. Here, we investigated whether exploration trajectories predicted cognitive map accuracy, and how these patterns were shaped by environmental structure. In two experiments, participants freely explored a previously unfamiliar virtual environment. We related their exploration trajectories to a measure of how long they spent in areas with high global environmental connectivity (integration, as assessed by space syntax). In both experiments, we found that participants who spent more time on paths that offered opportunities for integration formed more accurate cognitive maps. Interestingly, we found no support for our pre-registered hypothesis that self-reported trait differences in navigation ability would mediate this relationship. Our findings suggest that exploration patterns predict cognitive map accuracy, even for people who self-report low ability, and highlight the importance of considering both environmental structure and individual variability in formal theory- and model-building.