Observations of differences in electromagnetic velocity relative to anisotropy using a Lecher line and a standing electromagnetic wave

Author:

Steinhauer Rene

Abstract

This paper describes an experiment designed to observe potential changes in electromagnetic propagation velocity. It has been widely demonstrated that if the frequency of an electromagnetic wave is fixed, then the associated wavelength is causally related to c. Furthermore, the logical conclusion related to this known association (of frequency, wavelength, and light speed) is that, if the generated frequency during an experiment remains the same, and there is a velocity change in c, there would be causally related expansion or reduction in the associated wavelength. With the use of a Lecher line and a standing electromagnetic wave, the experimenter can measure changes in wavelength by measuring electrical output at an assigned position on a Lecher line. Results of this experiment demonstrated an obvious and experimentally repeatable phase change associated with rotation of the Lecher line. This phase change was demonstrated by a change in electrical output measured at the assigned location on the Lecher line. This experiment was repeated using various frequencies and voltage inputs into the Lecher line with obvious results that demonstrated an anisotropic difference. Further experiments were completed attempting to find an alternative hypothesis for the phase change noted in the original experiment, but these experiments were unable to identify an alternative cause of the phase change and consequently support the hypothesis that the phase change was directly related to anisotropy secondary to a change in the measured wavelength of the electromagnetic wave. Based upon the logical conclusions associated with this experiment and the results obtained, this experiment appears to demonstrate variable speed light. Furthermore, this discovery brings into question the theory that electromagnetic propagation though space is at the constant of c.

Publisher

Physics Essays Publication

Reference14 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3