Operational understanding of the covariance of classical electrodynamics

Author:

Gömöri Márton,Szabó László E.

Abstract

It is common in the literature on classical electrodynamics and relativity theory that the transformation rules for the basic electrodynamic quantities are derived from the pre-assumption that the equations of electrodynamics are covariant against these—unknown—transformation rules. There are several problems to be raised concerning these derivations. This is, however, not our main concern in this paper. Even if these derivations are regarded as unquestionable, they leave open the following fundamental question: Are the so-obtained transformation rules indeed identical with the true transformation laws of the empirically ascertained electrodynamic quantities? This is of course an empirical question. In this paper, we will answer this question in a purely theoretical framework by applying what Bell calls “Lorentzian pedagogy”—according to which the laws of physics in any one reference frame account for all physical phenomena, including what a moving observer must see when performs measurement operations with moving measuring devices. We will show that the real transformation laws are indeed identical with the ones obtained by presuming the covariance of the equations of electrodynamics, and that the covariance is indeed satisfied. Beforehand, however, we need to clarify the operational definitions of the fundamental electrodynamic quantities. As we will see, these semantic issues are not as trivial as one might think.

Publisher

Physics Essays Publication

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intrinsic, Extrinsic, and the Constitutive A Priori;Foundations of Physics;2019-07-15

2. On the Persistence of the Electromagnetic Field;Journal for General Philosophy of Science;2018-09-22

3. THREE DIFFERENT FORMALISATIONS OF EINSTEIN’S RELATIVITY PRINCIPLE;The Review of Symbolic Logic;2017-03-28

4. Formal statement of the special principle of relativity;Synthese;2013-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3