Abstract
Albert Einstein’s general theory of relativity describes gravitation through a deformation of space-time. However, there is a high degree of parallelism between the linear approximation of general relativity and Maxwell’s theory of electromagnetism. The first of Maxwell’s
laws allows one to derive Coulomb’s law and, therefore, the correct radius dependency of charge interaction. Both theories (general relativity and Maxwell’s theory) are absolutely equivalent to each other in the linear derivation. Therefore, mass and charge have analogous positions
and functions. This is the starting point for considering that it should be possible to combine both theories into one. To do so, the general theory of relativity has to be formulated for the quantity z, which is a complex number that combines mass and charge. In this way, it becomes
possible to combine general relativity and electromagnetism into one theory.
Publisher
Physics Essays Publication
Subject
General Physics and Astronomy