The mathematical physical equations satisfied by retarded and advanced Green’s functions

Author:

Wang Huai-Yu

Abstract

In mathematical physics, time-dependent Green’s functions (GFs) are the solutions of differential equations of the first and second time derivatives. Habitually, the time-dependent GFs are Fourier transformed into the frequency space. Then, analytical continuation of the frequency is extended to below or above the real axis. After inverse Fourier transformation, retarded and advanced GFs can be obtained, and there may be arbitrariness in such analytical continuation. In the present work, we establish the differential equations from which the retarded and advanced GFs are rigorously solved. The key point is that the derivative of the time step function is the Dirac δ function plus an infinitely small quantity, where the latter is not negligible because it embodies the meaning of time delay or time advance. The retarded and advanced GFs defined in this paper are the same as the one-body GFs defined with the help of the creation and destruction operators in many-body theory. There is no way to define the causal GF in mathematical physics, and the reason is given. This work puts the initial conditions into differential equations, thereby paving a way for solving the problem of why there are motions that are irreversible in time.

Publisher

Physics Essays Publication

Subject

General Physics and Astronomy

Reference37 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The irreversibility of microscopic motions;Frontiers in Physics;2024-07-10

2. A generalized scattering theory in quantum mechanics;Journal of Physics Communications;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3