Возбуждение релаксационных колебаний на искривленной межфазной границе в условиях внутренней задачи

Author:

Сираев Рамиль РифгатовичORCID,Брацун Дмитрий АнатольевичORCID

Abstract

The oscillatory mode of solutal Marangoni convection during the absorption of a surfactant from a homogeneous external solution into a water droplet is studied numerically. This is caused by the effect of gravity, which promotes the sedimentation of surfactant molecules in an aqueous medium. This version of oscillatory convection arising under the conditions of an internal problem was recently discovered experimentally. In the present paper, we consider the case of a chemically inert system, in which there are no reactions. The effects of interfacial deformation are assumed to be insignificant and thus they are neglected. The mathematical model includes the Navier—Stokes equations written in the Hele-Shaw and Boussinesq approximations, and the equations of surfactant transport in the system. We assume that the characteristic time of surfactant adsorption is shorter than the time of its diffusion in both solutions, which makes it possible to ignore the formation of a surface phase. The boundary value problem includes the equilibrium condition of the system, which takes into account different values of the chemical potential in the phases. It is shown that a water droplet is a surfactant accumulator that diffuses from the organic phase. The problem is solved in dimensional form using the COMSOL Multiphysics package and based on a set of physical constants for acetic acid which, like many other members of the carboxylic acid family, has the properties of surfactant in water. It was found that direct numerical simulation of the system is able to reproduce the relaxation oscillations observed in the experiment only under the additional phenomenological assumption of non-Newtonian rheology of the interface, which was previously proposed for the external problem. The physical mechanism which may be responsible for the delayed onset of Marangoni instability is discussed. We demonstrate that periodic oscillations are generated inside the drop due to the competition between the Marangoni effect and the gravity-dependent convective instability of the solution. Using direct numerical simulation, we identified the structures of convective motion at the interface and in its neighborhood, determined the flow intensity as a function of time, and obtained the range of change in the oscillation period.

Publisher

Institute of Continuous Media Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3