Author:
M. Thimoteo Lucas,M. Vellasco Marley,M. do Amaral Jorge,Figueiredo Karla,Lie Yokoyama Cátia,Marques Erito
Abstract
This work proposes an interpretable machine learning approach to diagnosesuspected COVID-19 cases based on clinical variables. Results obtained for the proposed models have F-2 measure superior to 0.80 and accuracy superior to 0.85. Interpretation of the linear model feature importance brought insights about the most relevant features. Shapley Additive Explanations were used in the non-linear models. They were able to show the difference between positive and negative patients as well as offer a global interpretability sense of the models.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献