Bitcoin Trend Reversal Prediction with Tree-Based Ensemble Machine Learning

Author:

Ürgenç SergülORCID,Aşıkgil Barış1ORCID

Affiliation:

1. MIMAR SINAN FINE ARTS UNIVERSITY

Abstract

In recent years, Bitcoin (BTC) has become the most popular digital asset in the cryptocurrency market. Its prices are highly volatile due to rapidly increasing investor interest, making it difficult to predict price movements. The aim of this study is to predict trend reversals in BTC price movements by using tree-based ensemble machine learning techniques and compare the success rates of these techniques. For this purpose, the study focuses on points where the trend changes. The ‘buy’, ‘sell’, and ‘hold’ classes are balanced through under-sampling. Extreme Gradient Boosting (XGB), Random Forest (RF) and Random Trees (RT) models are developed. The results are evaluated by using precision, recall, specificity, F1 score and accuracy metrics. The study concludes that the XGB model exhibits higher success compared to other models.

Publisher

Turkish Journal of Forecasting

Reference23 articles.

1. [1] S. Ürgenç, Predicting Bitcoin Trends Reversals With Machine Learning Methods (Makine Öğrenmesi Yöntemleri ile Bitcoin Trend Dönüşlerinin Tahmin Edilmesi), (2023). Master Thesis, Mimar Sinan Fine Arts University, Istanbul.

2. [2] N.T. İnce, Predicting The Bitcoin Trend Using Technical Indicators For Deep Learning Algorithmic Features, (2019). Master Thesis, Boğaziçi University, Istanbul.

3. [3] Z. Qiang, J. Shen, Bitcoin High-Frequency Trend Prediction with Convolutional and Recurrent Neural Networks, Comput. Sci. (2021).

4. [4] S. Cavalli, M. Amoretti, CNN-based multivariate data analysis for bitcoin trend prediction, Appl. Soft Comput. 101 (2021) 107065. doi: 10.1016/J.ASOC.2020.107065.

5. [5] S. Alonso-Monsalve, A.L. Suárez-Cetrulo, A. Cervantes, D. Quintana, Convolution on neural networks for high-frequency trend prediction of cryptocurrency exchange rates using technical indicators, Expert Syst. Appl. 149 (2020) 113250. doi: 10.1016/J.ESWA.2020.113250.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3