The Spectral Shape of Combustion Noise

Author:

Tam Christopher K.W.1

Affiliation:

1. Department of Mathematics Florida State University, Tallahassee, FL 32306-4510

Abstract

In this paper, it is proposed that the spectral shape of combustion noise is the same as the similarity spectrum of the noise from the large turbulence structures of high-speed jets. This is true regardless of the turbulence level in the combustion process, the equivalence ratio of the fuel or whether the fuel is a gas or a liquid as long as it is hydrocarbon. At the present time, the mechanism by which combustion noise is generated is still not known. So, it is not possible to prove the correctness of the proposal theoretically or computationally. Here, an empirical approach is followed. Comparisons between the similarity spectrum and many sets of combustion noise spectra are made. The spectra are from open flames, low speed jets, can-type combustor, auxiliary power units and turbofan engines noise measurements. Good agreements are found offering favorable support for the proposal. This paper is written in honor of Dr. Marvin E. Goldstein, a world-class aero-acoustician, an accomplished applied mathematician and a much-respected long time friend.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3