Solving the Lilley Equation with Quadrupole and Dipole Sources

Author:

Tester Brian J.1,Morfey Christopher L.1

Affiliation:

1. Institute of Sound and Vibration Research, University of Southampton, Southampton, SO17 1BJ, UK

Abstract

The literature contains various methods for solving the Lilley equation with different types of quadrupole and dipole sources to represent the mixing noise radiated into the far-field by isothermal and heated jets. These include two basic numerical solution methods, the ‘direct’ and the ‘adjoint’, and a number of asymptotic, analytic solutions. The direct and adjoint equations are reviewed and it is shown that their solutions are not only related through the adjoint property: the radial ODE for the adjoint displacement Green's function is the same as that governing the direct displacement Green's function because this particular Green's function obeys classical reciprocity with respect to its radial dependence. Further, by comparing the two numerical solution methods within the context of the parallel flow assumption of the Lilley equation, it is shown that the numerical effort for the two methods is equivalent. The numerical solutions are compared with analytic low frequency ‘thin shear layer’ solutions and WKB solutions, both outside and inside the cone of silence. It is concluded that the former should be used with caution at all angles, while the WKB has some limitations inside the cone of silence. Although numerical solutions can be obtained with little computational effort and are the preferred route for jet mixing noise predictions, the analytic solutions still offer important physical insights as well as verification of numeric results.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3