Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine

Author:

Fiedler Andrzej J.1,Tullis Stephen1

Affiliation:

1. Department of Mechanical Engineering, McMaster University Hamilton, ON., L8S 4L7, Canada

Abstract

A high solidity, small scale, 2.5m diameter by 3m high Vertical Axis Wind Turbine (VAWT) consisting of three NACA 0015 profile blades, each with a span of 3m and a chord length of 0.4m, was tested in an open-air wind tunnel facility to investigate the effects of preset toe-in and toe-out turbine blade pitch. The effect of blade mount-point offset was also investigated. The results from these tests are presented for a range of tip speed ratios, and compared with an extensive base data set obtained for a nominal wind speed of 10m/s. Results show measured performance decreases of up to 47% for toe-in, and increases of up to 29% for toe-out blade pitch angles, relative to the zero preset pitch case. Also, blade mount-point offset tests indicate decreases in performance as the mount location is moved from mid-chord towards the leading edge, as a result of an inherent toe-in condition. Observations indicate that these performance decreases may be minimized by compensating for the blade mount offset with a toe-out preset pitch. The trends of the preset blade pitch tests agree with those found in literature for much lower solidity turbines.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference10 articles.

1. Double-multiple streamtube model for studying vertical-axis wind turbines

2. Paraschivoiu I., Wind Turbine Design with Emphasis on Darrieus Concept. Polytechnic International Press, Montreal, 2002, 346–349.

3. Flow Curvature Effects on Darrieus Turbine Blade Aerodynamics

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3