Optimisation of Wind Turbine Inspection Intervals

Author:

Andrawus Jesse A.1,Watson John1,Kishk Mohammed2,Gordon Heather1

Affiliation:

1. School of Engineering, the Robert Gordon University a Scottish charity registered under charity number SCO 13781, Schoolhill, Aberdeen, AB10 1FR. Fax: 01224 262844

2. The Scott Sutherland School, the Robert Gordon University, a Scottish charity registered under charity number SCO 13781, Garthdee Road, Aberdeen, AB10 7QB, UK

Abstract

The choice of correct inspection intervals poses a serious challenge to industries that utilise physical assets. Too short an interval increases operational cost and waste production time while too long an interval increases the likelihood of unexpected asset failures. Failure Modes and Effect Criticality Analysis (FMECA) is a technique that permits qualitative evaluation of assets' functions to predict critical failure modes and the resultant consequences to determine appropriate maintenance tasks for the assets. The Delay-Time Maintenance Model (DTMM) is a quantitative maintenance optimisation technique that examines equipment failure patterns by taking into account failure consequences, inspection time and cost in order to determine optimum inspection interval. In this paper, a hybrid of FMECA and DTMM is used to assess the failure characteristics of a selected subsystems of a chosen wind turbine. Optimal inspection intervals for critical subsystems of the wind turbine are determined to minimise its total life-cycle cost.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3