Characterization and Estimation of Wind Energy Resources Using Autoregressive Modelling and Probability Density Functions

Author:

Castellanos F.1,Ramesar Vincent Isa1

Affiliation:

1. Department of Electrical & Computer Engineering, University of the West Indies, St. Augustine, Trinidad & Tobago

Abstract

The commonly used two-parameter Weibull distribution has fitted many wind speed distributions reasonably well. However, the use of such probability density functions (PDFs) does not provide a very accurate description of wind resources. The main drawback is that the wind time series data are assumed to be uncorrelated over time. This paper studies autoregressive (AR) modelling as an alternative method to characterize a given wind regime. The AR model allows for a very accurate representation of the wind resource and additionally, provides a tool for its forecasting. The AR model is compared with commonly used non-Gaussian distributions for two Caribbean wind-speed time-series. The comparison evaluates the fitting of the models, and, most importantly, the estimated values of power and energy to be extracted from the wind resource. It is concluded that autoregressive (AR) modelling provides greater accuracy than the popular Weibull and Rayleigh distributions, especially for low wind-speed systems.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3