Optimized Compact Finite Difference Schemes with High Accuracy and Maximum Resolution

Author:

Liu Zhanxin1,Huang Qibai1,Zhao Zhigao1,Yuan Jixuan1

Affiliation:

1. Department of Mechanical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China, 430074

Abstract

The pentadiagonal compact finite difference scheme and asymmetric boundary schemes are optimized with high accuracy and maximum resolution in this paper. Through Fourier analysis, the optimization is reduced to the problem of finding the minimum of a multivariable nonlinear function with multiple constraints. The advanced sequential quadratic programming method is employed to find the minimum. In order to extend the resolution characteristic of the schemes, the wavenumber domain for optimization is nearly identical to the well-resolved domain, and the maximum well-resolved wavenumber is obtained by means of equal step length searching. The optimized schemes are strictly stable as confirmed by an eigenvalue analysis. The increased performances of the schemes are demonstrated through their application to one- and two-dimensional examples and are compared with other schemes optimized before.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3