Added Sound Sources in Jets; Theory and Simulation

Author:

Spalart Philippe R.1,Shur Michael L.2,Strelets Michael Kh.2

Affiliation:

1. Boeing Commercial Airplanes, P.O. Box 3707 Seattle, WA 98124, USA

2. “New Technologies and Services” (NTS), St.-Petersburg 197198, Russia

Abstract

The Large-Eddy Simulation (LES) system established over the last six years is reviewed in terms of its progress in accuracy and transition physics, and is then used to explore the transmission of noise from a known local source through a turbulent region, here the shear layer of a jet. For this, weak artificial monopole sources are added to an LES, and their sound tracked in detail both in the near-field and far-field. Sources are placed in the potential cores of the primary and secondary streams, as well as in the mixing layer and outside the jet with various locations relative to the observer, and different frequencies. Simple Ray Acoustics theory based on the mean flow field and assuming full conservation of wave action via the Blokhintsev equation is quite successful, both in terms of wave-fronts and sound level, even at a diameter Strouhal number St of only 0.5. The principal difference is that LES predicts a gradual cone of silence upstream, which theory does not. The abrupt downstream cones of silence agree. Thus, even crossing a mixing layer with a Mach 0.9 difference does not appear to alter the sound much. Cases with a dual nozzle and hot core stream return similar findings. This will be helpful when creating lower-order prediction tools, and correcting noise measurements made outside a co-flow.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3