Low-Speed Fan Noise Reduction with Trailing EDGE Blowing

Author:

Sutliff D.L.1,Tweedt D.L.2,Fite E.B.3,Envia E.3

Affiliation:

1. SEST Inc./NASA Glenn Research Center, Cleveland, Ohio 44135

2. AP Solutions Inc./NASA Glenn Research Center. Cleveland, Ohio 44135

3. NASA Glenn Research Center, Cleveland, Ohio 44135

Abstract

An experimental proof-of-concept test was conducted to demonstrate rotor-stator interaction tone noise reduction through rotor trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a trailing edge slot. Composite hollow rotor blades with internal flow passages were designed based on Computational Fluid Dynamics codes modeling the internal flow. The hollow blade with interior guide vanes creates flow channels through which externally supplied air flows from the root of the blade to the trailing edge. The impact of the rotor wake-stator interaction on the acoustics was also predicted analytically. The Active Noise Control Fan, located at the NASA Glenn Research Center, was used as the proof-of-concept test bed. In-duct mode and farfield directivity acoustic data were acquired at blowing rates (defined as mass flow supplied to trailing edge blowing system divided by fan mass flow) ranging from 0.5% to 2.0%. The first three blade passing frequency harmonics at fan rotational speeds of 1700 to 1900 rpm were analyzed. The acoustic tone mode power levels (PWL) in the inlet and exhaust were reduced 11.5&–0.1, 7.2&11.4, 11.8&19.1 PWL dB, respectively. The farfield tone power levels at the first three harmonics were reduced 5.4, 10.6, & 12.4 dB PWL. At selected conditions, two-component hotwire and stator vane unsteady surface pressures were acquired. These measurements show the modification of the rotor wake due to trailing edge blowing and its effect on the stator vane to illustrate the physics behind the noise reduction.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3