Analysis of Jet-Noise-Reduction Concepts by Large-Eddy Simulation

Author:

Shur Michael L.1,Spalart Philippe R.2,Strelets Michael Kh.1,Garbaruk Andrey V.3

Affiliation:

1. New Technologies and Services (NTS), St.-Petersburg 197198, Russia

2. Boeing Commercial Airplanes, P.O. Box 3707 Seattle, WA 98124, USA

3. St.-Petersburg State Polytechnic University, St.-Petersburg 195220, Russia

Abstract

The paper outlines the latest improvements to a CFD/CAA numerical system developed by the authors starting in 2001, and presents its application to the evaluation of three noise-reduction concepts. The improvements include a two-step RANS-LES approach to represent complex nozzles much more faithfully, and an accurate algorithm for shock capturing in LES, now based on local automatic activation of flux-limiters. The noise-reduction concepts considered are: beveled nozzles, dual nozzles with fan-flow deflection, and chevron nozzles. The simulations are carried out on PC clusters with at most six processors and on rather modest grids (2–4 million nodes). Nonetheless, in most cases the system is close to the 2–3 dB target accuracy both in terms of directivity and spectrum, while limited in terms of frequency (to a diameter Strouhal number that ranges from 2 to 4, depending on the grid used and the flow regime). Although this limitation is significant, especially for chevron nozzles, the overall message of the paper is that the available CFD/CAA numerical and physical models, properly combined, are capable of predicting the noise of rather complex jets with affordable computational resources, and already today can be helpful in the rapid low-cost analysis of noise-reduction concepts.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3