Affiliation:
1. University College Dublin, School of Computer Science & Informatics Belfield, Dublin 4 - Ireland
Abstract
The data mining field is an important source of large-scale applications and datasets which are getting more and more common. In this paper, we present grid-based approaches for two basic data mining applications, and a performance evaluation on an experimental grid environment that provides interesting monitoring capabilities and configuration tools. We propose a new distributed clustering approach and a distributed frequent itemsets generation well-adapted for grid environments. Performance evaluation is done using the Condor system and its workflow manager DAGMan. We also compare this performance analysis to a simple analytical model to evaluate the overheads related to the workflow engine and the underlying grid system. This will specifically show that realistic performance expectations are currently difficult to achieve on the grid.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献