Adaptive Sliding Mode Vibration Control of a Nonlinear Smart Beam: A Comparison with Self-Tuning Ziegler-Nichols PID Controller

Author:

Oveisi Atta1,Gudarzi Mohammad2

Affiliation:

1. School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran, 1684613114

2. Department of Mechanical Engineering, Damavand Branch, Islamic Azad University, Damavand, Tehran, Iran

Abstract

This paper investigates the vibration control of geometrically nonlinear beam with Macro Fiber Composite (MFC) actuators using two different adaptive control algorithms. A complete mathematical modeling is presented in order to find the dynamic equation of motion. Then, a robust adaptive fuzzy control algorithm for controlling the proposed mechanical structure is introduced. This controller includes a fuzzy scheme and a robust controller. Based on sliding mode controller a fuzzy system is introduced to mimic an ideal controller. The robust controller is designed based on compensation of the difference between the fuzzy controller and the ideal controller. The parameters of the fuzzy system and uncertainty bound of the robust controller are adjusted adaptively. The adaptive laws are designed based on the Lyapunov stability theorem to reach the stability of the closed-loop system. Meanwhile, for comparison purposes the presented controller is compared with self tuning Ziegler-Nichols PID controller for both robustness and vibration suppression performance aspects. Effectiveness of these two control strategies is evaluated by numerical simulations. Detailed analysis for the closed-loop system is carried out to evaluate the vibration controlling performance under different output excitation, robustness of the closed-loop system under sudden loading and the effect of initial condition on vibration characteristic.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3