Angle of Incidence Effects on Far-Field Positive and Negative Phase Blast Parameters

Author:

Rigby Sam E.1,Fay Stephen D.12,Tyas Andrew12,Warren James A.12,Clarke Sam D.1

Affiliation:

1. Department of Civil & Structural Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK

2. Blastech Ltd., The BioIncubator, 40 Leavygreave Road, Sheffield, S3 7RD, UK

Abstract

The blast overpressure acting on a rigid target is known to vary between the normally reflected overpressure and the incident overpressure as a function of the angle between the target and the direction of travel of the blast wave. Literature guidance for determining the exact effects of angle of incidence are unclear, particularly when considering the negative phase. This paper presents the results from a series of well controlled experiments where pressure transducers are used to record the pressure-time history acting on the face of a large, rigid target at various angles of incidence for varying sizes of hemispherical PE4 charge and stand-off distances. The test data demonstrated remarkable repeatability, and excellent agreement with semi-empirical predictions for normally reflected overpressures. The oblique results show that peak overpressure, impulse and duration are highly dependent on angle of incidence for the positive phase, and are invariant of angle of incidence for the negative phase.

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

Reference21 articles.

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3