Experimental Investigation of Aluminum Foam Lined Suppressive Shield Containment Vessels

Author:

Braimah Abass1,Elshafey Mohamed2,Halim Abd El Halim O. Abd El3,Contestabile Ettore4

Affiliation:

1. Assistant Professor, Department of Civil and Environmental Engineering, Carleton University, 3432 Mackenzie Building 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6

2. Assistant Professor, Civil Engineering Department, Canadian International College, Cairo, Egypt

3. Professor, Civil and Environmental Engineering Department, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6

4. Adjunct Professor, Civil and Environmental Engineering Department, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6

Abstract

Manufacture, transport, and storage of dangerous goods, especially energetic materials, in Canada and around the world pose serious challenges to explosives regulators and inspectors. Currently siting of manufacturing and storage facilities are in accordance with quantity-distance principles designed to mitigate effects of accidental explosions. The land requirements to satisfy these principles are imposing financial burdens on the explosives sector. This paper presents an experimental program designed to investigate the effectiveness of suppressive shield containers in reducing the blast pressure outside of the container while eliminating fragments thus reducing the distance requirement for the stored amount of explosives. Several suppressive shield panels including aluminium foam-lined panels were tested to study their effect on blast pressure and impulse. In addition computational fluid dynamics techniques were used to study suppressive shields effects on blast environment. The results show reduction of the incident peak blast pressure by 60% and the incident impulse by 58%. The aluminium foam-lined suppressive shield panels attenuated the peak incident pressure and impulse by 80%.

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3