Experimental Investigation on Monolithic Tempered Glass Window Responses to Blast Loads

Author:

Zhang Xihong12,Hao Hong2,Wang Zhongqi3

Affiliation:

1. School of Civil, Environmental and Mining Engineering, the University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia

2. Tianjin University and Curtin University Joint Research Center of Structural Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University, Kent St., Bentley WA 6102, Australia

3. The State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology

Abstract

Monolithic glass is one of the most commonly and widely used materials for structural glazing in buildings. Due to its relatively low strength and brittle nature, monolithic glass window is often the most fragile part of a structure when subjected to air blast wave. The breakage of glass window under explosion always leads to enormous injuries and fatalities as a result of ejecting glass sharps flying at high speed towards people in the occupied area. For better protection of building occupants, it is necessary to fully understand monolithic glass responses under blast pressure. In this study, a series of full-scale field blasting tests were carried out to investigate monolithic glass window responses to blast loads. Typical windows with tempered glass panels and steel strip boundaries were mounted onto a reinforced concrete (RC) frame purposely constructed to support the window specimens for the tests. TNT explosives of different weights were detonated at different stand-off distances in front of the window. Window responses were monitored with high-speed cameras and linear variable displacement transducer (LVDT). Pressure sensors were used to measure the reflected pressure. Glass window failure patterns and associated glass fragments were recorded and analyzed. The tested window performances were compared with the predicted results based on ASTM and UFC standards, as well as previous testing results. Based on the testing data, criteria for tempered glass crack and fracture under blast loadings were formulated.

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3